Initial Static Security Scan of

the Hackazon Application

Hayden Eubanks
School of Business, Liberty University
CSIS 486-D01
Prof. Backherms

November 13, 2023

Initial Static Security Scan of the Hackazon Application

Introduction:

In the security testing of web applications, a combination of static and dynamic security
scans can be performed to identify vulnerabilities within the software (OWASP, 2023a). The
first of these test methodologies, static testing, refers to the testing of software work products
that do not require the execution of code such as the analysis of design documentation,
requirements, or the source code itself (Nunes et al., 2019). In this way, static testing allows
security professionals to discover vulnerabilities early in the software development lifecycle
when the vulnerabilities are much easier and cheaper to mitigate (Simpson & Anthill, 2017).
Additionally, dynamic and static testing each have use cases for which they are best suited and as
such, a combination of static and dynamic testing can be implemented to uncover a greater
number of security defects (Nunes et al., 2019). This highlights the importance for security
professionals to understand static testing methodologies and through applying these strategies
alongside dynamic testing a greater degree of vulnerabilities can be discovered and mitigated
increasing the overall security of the software.

As the work products utilized in static testing are ‘static’ automation tools can be
implemented to scan through work products and identify any code that potentially introduces a
vulnerability into the software (Ferrara et al., 2021). The report generated from this static
vulnerability scan then allows a security professional to identify areas of concern throughout the
code and implement mitigation strategies before the software can be exploited. However, as
static vulnerability scanners do not dynamically interact with the software, they are only able to
detect vulnerabilities that they are specifically searching for within the work product (Nunes et

al., 2019). This then highlights one of the major determining factors in selecting a vulnerability

scanner to employ is the number and type of vulnerabilities the scanner is searching for (Ma et
al., 2022). With this, the frequency by which these vulnerability lists are updated should also be
considered as the untimely updating of known vulnerabilities could result in false negatives
being scans that do not identify known vulnerabilities present in the code allowing malicious
actors to discover them first. The diversity in vulnerability lists between different scanners then
highlights the added value in eliminating false negatives which could be gained from employing
a combination of static vulnerability scanners (Nunes et al., 2019). However, a security scanner
that is not best suited to the software under test could generate many false positives where errors
are being generated where no vulnerability exists (Simpson & Anthill, 2017). With all of these
factors in mind, it can be seen that selecting the correct set of tools for a security scan can vastly
improve the number of vulnerabilities discovered, and as such it is essential that a security
professional understand the benefits and use cases for several static analysis tools.

In this report, the Research and Innovation Promote Security (RIPS) scanner was used to
scan the code of the entire Hackazon application and detect several vulnerabilities present within.
The primary vulnerability classifications present within the application are vulnerabilities to
cross-site scripting (XSS), file manipulation, file disclosure, and command execution with XSS
by far being the most common vulnerability discovered. Throughout this report, an examination
of these vulnerabilities will be performed with specific attention being placed on the prevention
of XSS attacks as this vulnerability is quite severe (OWASP, 2021) and the most prevalent
throughout the webpage. The generalized dangers of XSS scripting will then further be explored
in the last section of the report with the worst-case scenario of injecting code that monitors and
reports user data being examined. The vulnerabilities discovered throughout the security scan of

the Hackazon application could prove extremely damaging and as such, reveal the importance of

using a static security scanner such as RIPS to detect these vulnerabilities before a malicious

actor is able to.

Evidence of RIPS Configuration:

GitHub Repository from which RIPS was retrieved

[l Computer

0 Recent

Starred hackazon rips-
scanner-
i Home community

(2 Documents
{ Downloads
Music
[a] Pictures
H Videos
[Trash
B icloud

] Home

+ Other Locations

RIPS Scanner launched and configured

- e oking o and chck Ry
retate ot 3 ctory of yous st

5 when ncluec by e PHP cods. However

o yo et e 1 1
Al e 5can s 4 e bton il acoear 1 e s g, You can st besween St ypes of

Changs e syreas hrighng scnea cr By by weiactng 3 3w code style
Beiore scanin yo. Car choses whrh wiy T Code Som 150! e S20iared. etsemup o Yop-down

icons

User inpul s e hours i s i Poerial ey prsed b vl sy exgionen
Geclred i o ine. Have & lcok a e cals it e e et

Gl 7 0r ¢ 10 v 1o the e dciaraten orcal f s arcson
: . Ths may

Options:

2 Cick e e con 0 opig
Wit

e coper rght 1 get Aanctions hor & st are gragh o af e

a5 P code of hocat

Cick e ez con Yo
@ Clon 0 targat 1 1 oo 1o Explolt Crestor & e weciom i C08 who 10 4 x50 OuEaia 4] croate PHF it enpiot cote
i erache code pach i wdowrabity type

'
Hints.
510 sousce code awyi B oty 4Cans 30.rce code s 201wl ok exscte P Coe

25 inplomerss

Otvoc areeied code iclasees) 8 ot

Make pure PP s e prmaicns on th thes D¢ scsnved
AP et

Uret anly
Orty v i Foeion

Evidence from static security scan

Result

Vulnerability Report:

Through the static vulnerability scan of the Hackazon application, several vulnerabilities
were discovered such as vulnerability to cross-site scripting (XSS), file disclosure, file
manipulation, session fixation, possible flow control, and code execution. These categories made
up the 70 distinct vulnerabilities discovered with XSS by far being the most prevalent accounting
for 80% of the vulnerabilities identified (The full list of vulnerable code snippets from the 70
vulnerabilities discovered can be viewed in the appendix at the end of this report). With this, it
can be seen that errors such as the vulnerability related to XSS have been replicated across the
various pages of the application, and as such an examination of each vulnerability can allow for
the vulnerability to be mitigated in each instance. An examination for each of the vulnerability
types will be performed within the context of the Hackazon application, and this analysis should
then allow for mitigation strategies to be employed that strengthen the security of the application.

The first, and most prominent, vulnerability present within the Hackazon application is
the vulnerability to cross-site scripting attacks where a malicious actor could inject their own
scripts into a webpage allowing those scripts to execute and carry out a malicious action
(OWASP, 2021). XSS attacks will be examined more thoroughly within the following section of
the report, but in general XSS attacks can be attributed to a lack of input validation for fields that
repeat the user’s input back to the webpage (OWASP, 2023b). This is often referred to as a
reflected XSS attack as the user’s input is reflected off of the database and returned to the user’s
webpage as part of an error message, search results, a comment in a comment section, or other
places where the data would be presented back to the user. This is the most common
vulnerability discovered in the Hackazon application as there are several fields for search results

and comments where a reflected XSS attack could be performed. However, more dangerous is

the fact that the Hackazon application is also prone to more persistent XSS attacks where the
malicious code could be stored on the database to carry out the malicious actor’s purposes when
other users visit the site. While the worst-case scenario will be further explored in the next
section, it can be seen that a vulnerability to XSS attacks is a serious concern and must be
mitigated by encoding the special characters used in HTML and JavaScript code so that the user
entry cannot be interpreted as executable code (OWASP, 2023b).

The next most common vulnerability in the Hackazon application, file disclosure, can be
seen as the vulnerability where a webpage unintentionally reveals information to the user such as
files or information regarding the file tree infrastructure (PortSwigger, n.d.). Within the context
of the Hackazon application, this security failure arises when user input is used to select a file
allowing the user to retrieve files, they otherwise should not have access to. Further, the
Hackazon application also allows for information regarding the file tree structure to be displayed
when malicious code is injected through XSS scripts (PortSwigger, n.d.). This vulnerability
could be amended by changing the code to not directly accept user input for file recovery but
instead process the input to ensure the user is only ever returned files they should have access to.
Several other vulnerabilities were also highlighted throughout the detailed vulnerability report,
and by examining this report mitigation strategies could be created and each vulnerability

addressed vastly increasing the security of the Hackazon application.

Examples of XSS:

Cross Site Scripting (XSS) is the most common vulnerability discovered within the
Hackazon application, and as such it is important to examine how XSS attacks work as well as
how they are mitigated. To accomplish this, XSS attacks will be examined on the general level
before closely examining specific examples from the Hackazon application to gain a clear
understanding of the discovered vulnerabilities. Following this, the worst-case scenario will be
explored to show the severity of this exploit and the effect it could have on the business and end
users. Finally, mitigation strategies will be explored to discuss how XSS attacks can be mitigated
increasing the security of web applications such as Hackazon. This examination of XSS attacks
will then allow a security professional to understand, detect, and mitigate XSS vulnerabilities
highlighting the importance of understanding XSS attacks.

XSS attacks can be described as a form of injection attack where a malicious actor injects
HTML or JavaScript code into a webpage through a field that echoes user input back to the
webpage or to the database itself (Rodriguez et al., 2022). These attacks can then be broken
down into their two most prominent classifications being reflected and stored XSS attacks.
Reflected XSS attacks result when the malicious code is reflected off of the database and
injected back into the webpage (OWASP, 2023b). For example, if the malicious code is injected
into the search bar where the user input is echoed back to the screen, the code typically
responsible for posting the user’s input then places the code into the webpage where instead of
presenting as text, the code is executed. In contrast to this, stored XSS attacks are more persistent
attacks where the malicious code is stored on a database and then executed when that database
value is retrieved and displayed on the screen (OWASP, 2023b). One example of this within the

Hackazon application could be the storing of malicious code within the description of a posted

10

item for sale. When a user then goes to view this item the code is executed resulting in the XSS

attack being performed.
To better understand these XSS attacks, specific examples from the Hackazon application

will be examined. The first of these examples can be viewed on the index.php home page at line

592 of the code where the user input for the item search bar is processed.

This vulnerability then means that code can be injected into the search bar and executed on the
system when the search results are returned. For example, when the JavaScript code is entered

for the alert command surrounded by the script identifiers, the code is then executed on the page.

HACKAZON

All+ | <script=alert(“test")</script=

11

While this specific example is relatively benign, more malicious code could be injected to
enumerate the system or attempt to steal data regarding the system or other users.

Another example in the code where an XSS vulnerability can be observed is in the
cart/view.php file on line 11 where the HTTP environment variable for the host is echoed from

the server.

Eile:

This vulnerability means that if an attacker was able to manipulate this HTTP variable through
another injection attack, then they would be able to execute an XSS attack when this input is
echoed back to the user. Again, this highlights a severe vulnerability within the system that must

be mitigated to ensure system security and integrity.

12

A third example of an XSS vulnerability within the Hackazon application can then be
observed in the description of a product. This XSS vulnerability example highlights an example
of the more dangerous stored XSS attack as this attack would be executed upon retrieving the
malicious code embedded in the description from the database. An example of this can be
viewed on line 109 of the index.php file where a description of a product on the home page is

displayed.

Using this example as a basis for the worst-case scenario, it can be seen that code injected into
the description of a product displayed on the home page would prove extremely dangerous as all
users who visit the home page would then have the code executed on their page (Wibowo &
Sulaksono, 2021). A malicious user may inject a window to pop up suggesting that the user must
re-enter their login credentials and as the user has not left the trusted site, they may be inclined to
enter the credentials allowing the malicious actor to be sent the credentials. If this idea was then
extended to more sensitive information such as payment details, the vast potential damages of an
XSS attack such as this can be seen. XSS attacks are a serious threat facing online applications
today (Nunes et al., 2019) and for this reason, security professionals must understand XSS
attacks and be able to mitigate them when they are discovered.

Fortunately, XSS attacks while incredibly dangerous are relatively easy to mitigate. The

first step in mitigating XSS attacks involves the careful validation of user input so that all special

13

characters used in HTML or JavaScript code are encoded to benign values that will not result in
code execution (OWASP, 2023b). This encoding should also hold true for the processing of
values such as HTTP environment variables or any other input that could have been modified by
a malicious actor. Additionally, a security professional can utilize tools such as a static
vulnerability scanner to detect any segments of code that may have been missed and ensure that
any remaining vulnerabilities are mitigated (Simpson & Anthill, 2017). As XSS vulnerabilities
result from flaws in the source code, static analysis tools can be used to effectively detect these
vulnerabilities proving their value to security professionals seeking to protect an application such

as Hackazon.

14

References
Ferrara, P., Mandal, A. K., Cortesi, A., & Spoto, F. (2021). Static analysis for discovering 10T
vulnerabilities. International Journal on Software Tools for Technology Transfer, 23(1),

71-88. https://doi.org/10.1007/s10009-020-00592-x

Ma, L., Yang, H., Xu, J., Yang, Z., Lao, Q., & Yuan, D. (2022). Code analysis with static
application security testing for python program. Journal of Signal Processing

Systems, 94(11), 1169-1182. https://doi.org/10.1007/s11265-022-01740-z

Nunes, P., Medeiros, I., Fonseca, J., Neves, N., Correia, M., & Vieira, M. (2019). An empirical
study on combining diverse static analysis tools for web security vulnerabilities based on

development scenarios. Computing, 101(2), 161-185. https://doi.org/10.1007/s00607-

018-0664-z

OWASP. (2023a). Source Code Analysis Tools. OWASP. https://owasp.org/www-

community/Source Code Analysis Tools

OWASP. (2023b). Cross site scripting (XSS). OWASP. https://owasp.org/www-

community/attacks/xss/

OWASP. (2021). OWASP top ten: Top 10 web application security risks. OWASP.

https://owasp.org/www-project-top-ten/

PortSwigger. (n.d.). Information disclosure vulnerabilities. PortSwigger.

https://portswigger.net/web-security/information-disclosure

Rodriguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020). Cross-site scripting (XSS)

attacks and mitigation: A survey. Computer Networks (Amsterdam, Netherlands:

1999), 166, 106960. https://doi.org/10.1016/j.comnet.2019.106960

https://doi.org/10.1007/s10009-020-00592-x
https://doi.org/10.1007/s11265-022-01740-z
https://doi.org/10.1007/s00607-018-0664-z
https://doi.org/10.1007/s00607-018-0664-z
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-project-top-ten/
https://portswigger.net/web-security/information-disclosure
https://doi.org/10.1016/j.comnet.2019.106960

15

Simpson, M. T., Anthill, N. (2017). Hands-on ethical hacking (3" ed.). Cengage Learning.

https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentld=568161245608134035

8553076923&elSBN=9781337271721&id=1937025370&snapshotld=3720027 &

Wibowo, R. M., & Sulaksono, A. (2021). Web vulnerability through cross site scripting (XSS)
detection with OWASP security shepherd. Indonesian Journal of Information

Systems, 3(2), 149-159. https://doi.org/10.24002/ijis.v3i2.4192

https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=5681612456081340358553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&
https://ng.cengage.com/static/nb/ui/evo/index.html?deploymentId=5681612456081340358553076923&eISBN=9781337271721&id=1937025370&snapshotId=3720027&
https://doi.org/10.24002/ijis.v3i2.4192

Appendix:
Full Vulnerability Report

Screenshotl:

File: withou!_action.php

Screenshot2:

File: test network_confirm.php

16

Screenshot3:

nk. For more

17

the help icon

input r

W Cross-She Scripting
BB Userin : " t 1p icon

e

the help icon

18

Screenshotb:

with_quoted values.php

form.php

the help icon on the

confirm.php

Screenshot7:

19

front_controller

request.php

Screenshot9:

20

iront_controller_style/a_page.php

lanipulation

input ¥

B File Manipulation
1]

Screenshotl1:

21

W File Manipulation
EE U

Screenshotl12:

m_with

array_based_inputs.php

55-Site Scripting

all_lastcraft.php

Screenshot13:

22

® Possidle Fiow Control

E W Userinput reaches sensitiv
®

® Cross-She Scripting

5=

[]
-]
]
®

Screenshot15:

= File Disclo
Em L

Cross-Gite Seripting

t

Cross-Site Scripting

23

Screenshotl7:

W Cross-Site Scripting
L

24

25

Screenshot19:

® Cross-Site Scripting

eaches sensitive sink when fu

ENT_QUOTES)

WARNFILES

Cross-Site Scripting

® Cross-Shte Scripting

Screenshot21:

26

Screenshot22:

Screenshot23:

Cross-Site Scripting

=
B
®

B userinput

ite Scripting

input

27

28

Screenshot25:

File: i back_office/Servi

phpentrypointurl ()

File: / back_office/AB

phpentrypointurl ()

File: back_office/C| php

File: /var/www/ back_office/Cli php

Screenshot27:

29

Lphp

	References

